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ABSTRACT   

This paper proposes an effective anomaly detection algorithm for a forward-looking ground-penetrating radar 

(FLGPR). One challenge for threat detection using FLGPR is its high dynamic range in response to different kinds of 

targets and clutter objects. The application of a fixed threshold for detection in a full-band radar image often yields a 

large number of false alarms. We propose a method that uses both narrow-band and full-band radar processing, coupled 

with a classifier that uses complex-valued Gabor filter responses as the features.  We then fuse the narrow-band and full-

band images into a composite confidence map and detect local maxima in this map to produce candidate alarm  

locations. Full-band radar images provide a high degree of image resolution, while narrow-band images provide a means 

to detect targets which have a unique narrow-band signature.  Experimental results for our improved detection 

techniques are demonstrated on data sets collected at a US Army test site.   

Keywords: forward-looking explosive hazards detection, ground-penetrating radar, narrow-band processing, false alarm 

rejection, fusion, Gabor filters 

 

1. INTRODUCTION  

Remediation of the threat of explosive hazards is an extremely important goal, as these hazards are responsible for 

uncountable deaths and injuries to both civilians and soldiers throughout the world. Systems that detect explosive 

hazards have included ground-penetrating-radar (GPR), infrared (IR) cameras, and acoustic technologies.
1-3

 Both 

handheld and vehicle-mounted GPR-based systems have been examined in recent research and much progress has been 

made in increasing detection capabilities.
4,5

 Forward-looking synthetic aperture GPR (FLGPR) is an especially attractive 

technology because of its ability to detect hazards before they are encountered; standoff distance can range from a few to 

tens of meters. FLGPR has been applied to the detection of side-attack mines
6
, and mines in general.

7,8
 A drawback to 

these systems is that FLGPR is not only sensitive to objects of interest, but also to other objects, both above and below 

the ground. This results in an excessive number of FAs. 

Figure 1 illustrates our proposed FLGPR-based explosive hazard detection algorithm.  View (a) illustrates the 

prescreener and feature measurement approach.  A prescreener detects local maxima in the full-band and narrow-band 

images and then a filter band of Gabor filters is used to measure the texture content of images at each prescreener alarm.  

These features are passed to a classifier, shown in view (b), which uses a statistical feature selection method to pick the 

best feature from which to classify true positive from false alarms.  A classifier is then trained on this best feature to 

produce the best Area-Under-ROC (AUR).  Finally, the classifier results from the full-band and each narrow-band image 

are fused into a grid-based confidence map, as shown in view (c).  The local maxima are detected in this confidence map 

to determine the candidate alarm locations.  We will show in Section 4 that the proposed approach can reduce the false 

alarm rate in test data by greater than 50%, while maintaining a detection rate comparable to using just a threshold-based 

prescreener. 

The data used in this paper are composed of four runs of the FLGPR system at a US Army test facility.  We will call 

these runs, Lanes 1, 2, 3, and 4.  These data consist of two runs down one test road and two runs down another test road, 

each with slight changes to the hardware configurations—although, we currently do not consider these slight changes as 

having an impact on the relative performance.  The results shown are test results, which means that the detection 



 

 
 

 

algorithm was trained on three lanes and then tested on the remaining lane.  Hence, no data from the test lane were used 

to train the detection algorithms. 

Section 2 describes the narrow-band FLGPR processing, including the image formation and band-pass filtering.  The 

Gabor filter feature measurement, classifier training procedure, and confidence map fusion and detection method is 

outlined in Section 3.  We present test results on four lanes in Section 4.  Section 5 summarizes. 

1.1 ALARIC FLGPR 

The FLGPR images we use in this paper were collected using a system called ALARIC.  This system is an FLGPR 

system that is composed of a physical array of sixteen receivers and one or two transmitters.  In the past decade, FLGPR 

systems have primarily used their physical arrays (aperture) as well as their radar bandwidth for achieving high 

resolution imaging; conventional backprojection or time-domain correlation imaging has been used for this purpose.  

Those systems rarely tried to exploit imaging information that is created by the motion of the platform.  The ground-

based FLGPR community has referred to imaging methods that leverage platform motion as multi-look imaging.  

Though, in the airborne community, this is better known as synthetic aperture radar (SAR) imaging.  SAR has been 

shown to be an effective tool for airborne intelligence, surveillance and reconnaissance (ISR) applications. 

The ALARIC system is equipped with an accurate GPS system. As a result, it is capable of processing both physical and 

synthetic aperture imaging, even when the platform moves along a nonlinear or curved path.  To create the FLGPR 

images, a nonlinear processing technique called Adaptive Multi-Transceiver Imaging is used.  This method exploits a 

measure of similarity among the 32 T/R images which adaptively suppresses artifacts such as sidelobes and aliasing 

 

(a) Prescreener and feature measurement 

 

(b) Classifier training and testing 

 
(c) Confidence map and final detection 

Fig. 1. Block diagram of our proposed FLGPR-based explosive hazard detection algorithm. 



 

 
 

 

ghosts. 

Table 1 contains the parameters of the ALARIC FLGPR that were used to create the images used in this paper. 

The FLGPR images are created for an area -11 to +11 meters in the cross-range direction—although only the -5 to +5 

meter cross-range sub-region is used in our detection algorithms—where negative numbers indicate to the left of the 

vehicle.  Coherent integration of the radar scans is done in an area 5-10 meters in front of the vehicle.  The pixel-

resolution of the FLGPR image is 5 cm in the down-range and 3 cm in the cross-range directions.  The center frequency 

is 800 MHz and the bandwidth is 1.4 GHz.  The detection region we use is 10 meters wide, centered in the cross-range 

direction.  References 9-13 describe our previous efforts in detecting explosive hazards using FLGPR; the prescreener 

algorithm we use here is also used in this previous work. 

1.2 Prescreener 

Consider an FLGPR image,       , where   is the cross-range coordinate and   is the down-range coordinate. This 

image is input to a local-maxima finding algorithm to determine candidate alarm locations.  Our method first computes a 

maximum order-filtered image with a 3 m x 1 m kernel.  We denote this order-filtered image as       .  Essentially, 

each pixel in the FLGPR image is replaced by the maximum pixel value within a 3 m cross-range and 1 m down-range 

rectangle, centered on the pixel.  Figure 2 shows an example of an FLGPR image and its associated order-filtered image.  

As this figure shows, the order-filter reduces the effect that noise-induced artifacts have on finding ―hot spots‖ in the 

image.  Alarms are identified by the operation 

                                    

Table 1. ALARIC FLGPR image-forming parameters 

Parameter Value 

Coherent integration range 5 – 10 meters down-range 

Full-band bandwidth 

Narrow-band bandwidth 

100 MHz – 1.5 GHz 

100 MHz (14 narrow-bands from 100MHz to 1.5 GHz) 

Down-range image resolution 5 cm 

Cross-range image resolution 3 cm 

Cross-range detection limits -5 to +5 meters 

 

 

 

Fig. 2. Local maxima prescreener example—alarm locations shown as white circles, target locations shown as red circles. 



 

 
 

 

where A is the set of local-maxima locations.  The minimum operator prescreens alarm locations that have a very low 

FLGPR image value (confidence).  We chose a value of -90 dB for this threshold as this only eliminates alarms with the 

lowest of confidences.  This prescreening threshold merely minimizes the computational cost of the subsequent 

algorithms by reducing the number of alarms to a manageable number.  We also annotate the alarm locations A with the 

value of the FLGPR image pixel at each location, which we denote as     .  This pixel value is, in effect, the confidence 

of the alarm—the higher the value, the higher the confidence.  Figure 2 illustrates the prescreener process, including the 

alarm locations for the example images shown. 

We use this prescreener on both the full-band FLGPR image as well as the 14 narrow-band images.   

1.3 Area Under ROC (AUR) 

The AUR metric is used in the training of the classifiers as well as to show the relative efficacy of the different detection 

methods that we employ.  This metric is simply the normalized area under the resulting receiver-operating characteristic 

(ROC) curve for a given detector.  Figure 4 illustrates how we calculate this metric for an example ROC curve.  We 

chose a maximum false alarms per meter-squared rate of 0.2 at which to limit the AUR calculation and calculate the 

AUR by 

    
 

   
        

   

 

  

where       is the probability of detection at a given false alarm rate of  .  Notice that the minimum AUR is 0, which 

indicates that          for all  , and the maximum AUR is 1, which indicates perfect probability of detection with 

zero false alarms.  

1.4 Miss-distance halo size 

In this paper, we present results for two different miss-distances: 2 meter and 1 meter radius halos.  While we believe 

that 2 m halos are excessive in size (imagine trying to dig something up in a 4 meter wide circle), the role of FLGPR in 

the battlefield has not yet been established and, thus, we wish to be comprehensive about the results we present.  There 

are many mechanisms of error in FLGPR that do not exist in downward-looking sensors, such as refraction at the air-

ground boundary and other soil boundary layers, longer range imaging (which accentuates geo-location-based errors), 

and low-grazing angle specular ground-bounce.  As of yet, a comprehensive understanding of how these sources of error 

manifest into miss-distances does not exist.  Furthermore, we believe that FLGPR can operate as an early-warning 

sensor, cueing operators to the presence of targets ahead.  The operators can then slow down and use a downward-

looking system to more accurately locate the hazard.  This allows operators to overall travel at higher speeds, covering 

more terrain in less time. 

Next we describe the narrow-band processing and image formation. 

 

Fig. 3. Area Under ROC (AUR) metric calculation. 



 

 
 

 

2. NARROW-BAND FLGPR PROCESSING  

The spatial resolution in FLGPR images is directly related to the bandwidth of the range spectrum used to produce those 

images.  Hence, we expect that the full-band images will have the best overall image quality.  However, it has been 

observed that the characteristics of targets and clutter are different in narrow-band radar images—in other words, targets 

can occupy a different spatial spectrum than clutter.  We aim to leverage this hypothesis by using narrow-band FLGPR 

images. 

One of the final steps in the radar image-formation process is to filter the spectrum in each receiver signal and then up-

sample this signal to increase the resolution of the final image.  Figure 4(a) demonstrates this filtering process for an 

example range profile.  The blue line indicates the range spectrum before the signal is filtered down to the 100 MHz – 

1.5 GHz bandwidth. 

The narrow-band images are created by narrowing the filter used and creating fourteen 100 MHz bandwidth signals 

across the 100 MHz – 1.5 GHz spectrum.  These 14 narrow-band signals are then used to create the 14 narrow-band 

FLGPR images.  Figure 4(b) shows the 14 band-pass filters used to create the narrow-band images. 

2.1  Narrow-band prescreener results 

We apply the prescreener to each of the 14 narrow-band images, producing alarm locations   , where   is the 

frequency narrow-band index.  Figure 5 shows the AUR of the prescreener on the 14 narrow-band images as well as the 

full-band image.  As these graphs show, the full-band images typically produce a higher AUR result, while the lower 

frequency bands perform much poorer than the middle- and high-frequency bands.   

Next, features are measured for each of the alarms in the 14 narrow-band images and the full-band image.  

3. DETECTION AND FALSE ALARM REJECTION METHOD  

Each narrow-band image and the full-band image has its own set of alarms, features, and an independently trained 

classifier—the fusion of these classifiers is described in Section 4.  Here we will describe the feature measurement and 

classifier training process, which is identical for each band. 

3.1 Gabor filter texture feature 

The features that we measure for each alarm location in each of the 15 images are Gabor filter-based.  The Gabor filter is 

an edge detection filter that is similar to those used in the human visual cortex.
14

  The filter is essentially a Gaussian 

envelope modulated by a complex sinusoidal plane wave.  The form we use is 

                                                        

                   

 

(a) Full-band image band-pass filtering of range spectrum 

 

(b) Narrow-band band-pass filters 

Fig. 4. Band-pass filtering of range spectrum in FLGPR receiver before up-sampling process. 
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(a) Lane 1 – 1 meter halo 

 

(a) Lane 2 – 1 meter halo 

 

(a) Lane 3 – 1 meter halo 

 

(a) Lane 4 – 1 meter halo 

 

(a) Lane 1 – 2 meter halo 

 

(a) Lane 2 – 2 meter halo 

 

(a) Lane 3 – 2 meter halo 

 

(a) Lane 4 – 2 meter halo 

Fig. 5. Prescreener Results.  Full-band results shown as band #15. 

 



 

 
 

 

where                   is the set of filter parameters: a and b are the widths of the Gaussian envelope,   is the 

rotation angle of the envelope,    is the frequency of the sinusoid,    is the rotation of the sinusoid, and   is the phase. 

Figure 6 shows two examples of Gabor filters.   

We convolve a filter bank composed of 512 different Gabor filters with the FLGPR images at each alarm location (in 

each of the 15 images).  The parameters of the 512 filters are all possible combinations of those shown in Table 2.  

Hence, the features for each band are 

                         
      

   

  

     

  

     

         

where    is the  -band image.  Notice that F is a 512-dimensional vector for each alarm in   . 

Now we have a 512-dimensional feature vector that describes each alarm in each of the 15 images.  Next we determine 

which feature will be the best for separating true positives from false alarms. 

3.2 Feature selection 

We concatenate the features from three training lanes and use a two-sample t-test with pooled variance estimate to rank 

the features.  The two-sample t-test simply provides a measure of how well-separated the means of two sample-based 

distributions are with respect to their variance.  Assume that    is the set of features for the false alarms and    are the 

features for the true positives.  First, the pooled variance estimate is calculated by 

 

Table 2. Gabor filter bank parameters. 

Parameter Value 

1/a, 1/b 30, 60 pixels 

   0, 45, 90, 135 degrees 

      10, 20 pixels per cycle 

    0, 90, 180, 270 degrees 

     
 

 
 
 

 
 
  

 
  radians 

Total of 512 filters 

 

 

 

(a)   
 

  
   

 

  
        

 

  
         

  

 
 

 

(b)   
 

  
   

 

  
         

 

  
          

  

 
 

Fig. 6. Examples of complex-valued Gabor filters.  Real part of filter shown. 
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where    is the number of false alarms,    is the number of true positives,   
  is the sample-based variance of the false 

alarms, and   
  is the sample-based variance of the true positives.  The t-test is computed as 

 

where       and        are the sample-based means of the false alarms and true positives, respectively.  The larger the value 

of t, the greater the separation of the means with respect to the pooled variance estimate. 

We perform the t-test on each dimension of the feature vector F and keep the feature with the highest t-test value.  We 

then use this best feature to train a classifier. 

Other feature ranking methods were tried, including AUR, KL divergence, and Bhattacharyya distance; the two-sample 

t-test provided the best test results on the test data we had. 

3.3 False alarm rejecting classifier 

Assume that Fbest  is the feature chosen by our feature selection method.  We take this feature from the three training 

lanes and train a linear classifier to discriminate true positives from false alarms.  First, we fit a normal distribution with 

a pooled variance estimate to the feature values from each class in the training data.  We use a pooled variance estimate 

because the number of true positives in the data is very small compared to the false alarms; hence, an accurate variance 

estimate for the true positives is unattainable.  Assume that        is the resulting probability of a true positive given an 

input feature value and        is the probability of a false alarm.  Hence, the resulting classifier, for a given input 

feature F, is simply 

          
                      

     
   

where      and      are the prior probabilities.  We use the prior probabilities to tune the classifier to achieve the 

highest AUR of the output true positive class (which will, of course, include some false alarms). 

 

(a) Test results for lane 1 – 1m halo 

 

(b) Test results for lane 2 – 2m halo 

 

(c) Test results for lane 3 – 1m halo 

 

(d) Test results for lane 4 – 1m halo 
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We define the prior probabilities by a convex combination,                  .  Hence,   can be adjusted to 

change the behavior of the classifier.  An   near to 1 will cause the classifier to bias heavily towards classifying input 

features as true positives, while an   near 0 will cause the classifier to bias towards false alarms.  Although one could 

imagine that   could be tuned using a non-linear optimization method, such as a monte-carlo scheme or swarm 

optimization, we simply trained a classifier for each of                                   .  The performance of the 

classifier for each value of   was measured by the resulting AUR of the alarrns classified as true positives.  In other 

words, the training features were resubstituted into the classifier and the feature values (alarms) classified as true 

positive (+) were kept—the alarms classified as false alarms (-) were discarded.  The ROC curve for the alarms that were 

kept was computed and the   that produced the highest AUR was chosen as the best. 

Figures 6 and 7 shows the ROC curves for the output of the trained classifiers on four test lanes for the full-band images.  

These results are computed by training the classifier on three training lanes and then applying the classifier to the fourth 

test lane.  In other words, lanes 1, 2, and 3 are used to train the classifier for lane 4; lanes 2, 3, and 4 are used to train the 

classifier for lane 1; etc.  As Figs. 6 and 7 show, the classifier is able to reduce the number of false alarms and increase 

the AUR.  It is interesting to note that the classifier on lane 2 for both the 1m and 2m halos has a reduced maximum 

probability of detection; however, the AUR in both cases is increased.  Hence, although we use AUR here to train our 

classifiers, a different performance metric, such as false alarm rate at a specified probability of detection (say 90%), may 

be more appropriate, depending on the requirements of the specific application. 

A separate classifier is trained for each narrow-band image and the full-band image, resulting in 15 classifiers.  The 

output of these classifiers is a set of alarms: one set for each band.  We now discuss how we take these 15 sets of alarms 

and fuse them together to determine a final composite set of alarm locations. 

Fig. 7.  1m halo ROC curves of Gabor filter classifier.  Classifier results shown as green solid line, prescreener results shown as blue 

dotted line. 

 

(a) Test results for lane 1 – 2m halo 

 

(b) Test results for lane 2 – 2m halo 

 

(c) Test results for lane 3 – 2m halo 

 

(c) Test results for lane 4 – 2m halo 

Fig. 8. 2m halo ROC curves of Gabor filter classifier.  Classifier results shown as green solid line, prescreener results shown as blue 

dotted line. 
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3.4 Confidence map fusion and detection 

In the final step of our algorithm, we combine the classification results from all 15 bands.  The alarms in each of the 15 

images do not occur in the same exact location; hence, we simply cannot stack the classifier outputs and produce a ROC 

curve.  We produce an alarm confidence map, which is a grid-based map, where each map pixel represents the 

confidence of an alarm at its corresponding location.  This map is created by 

taking the classifier outputs—a set of alarm locations—from each of the 15 

images and mapping the confidence of those alarms onto the confidence map by 

applying a Gaussian blurring function.  Mathematically, this can be written as 

                

 

   

  

   

                                               

where         is the confidence value (pixel value in the radar image) of the 

alarm,                    is the Northing location of the alarms classified as 

true positives in the   band image using the best Gabor feature, with parameters 

     , and                    is the Easting location of the alarms.  The 

blurring function B has the following form 

                         

where       for our results. 

Figure 9 shows an example confidence map, composed from alarms from all 15 

images (14 narrow-band and 1 full-band images). 

We compose the final list of candidate alarms by using a local-maxima 

detecting prescreener, exactly like that used in the first step of our algorithm, on 

this confidence map.  However, for this detection step we use a 1m x 1m 

maximum-ordered filter (rather than the 3m x 1m filter used in the initial 

prescreener).  The result is a list of Northing-Easting locations, each with a 

composite confidence as indicated by the fusion of the 14 narrow-band and 1 

full-band classification results. 

4. RESULTS  

We tested our detection algorithm—prescreener, Gabor-feature classifier, and confidence map fusion—on four test 

lanes.  The training data for each test lane was the other three lanes; hence, we would like to stress that no information 

from the test lane was used in the training.  Thus, the results here are indicative of the expected performance on a new, 

unobserved lane. 

Figure 10 shows the ROC curves of final candidate alarms locations produced by our algorithm.  As these results show, 

our algorithm was able to significantly reduce the number of false alarms, while maintaining near parity in probability of 

detection, as compared to a threshold-based prescreener on the full band image.  Notable results include the 2m halo 

results on Lane 1: a probability of detection near 100% was achieved with 0.05 false alarms per meter-squared.  To 

compare, the full-band prescreener on Lane 1 produced 0.1 false alarms per meter-squared with a similar detection rate.  

Similar false alarm reduction was seen in the Lane 1, 1m halo results—more than 50% of the false alarms were rejected.  

Our algorithm produced similarly performing results on Lane 2. 

The results on Lanes 3 and 4 were less dramatic; however, in both cases, we were able to show improved performance.  

Interestingly, the maximum probability of detection for our algorithm was less than that of the full-band prescreener for 

the 1m halo results on Lanes 3 and 4.  However, the AUR was greater for our algorithm’s results.  Again, this is caused 

by the AUR metric in the classifier training.  If maximum probability of detection is an important consideration (as it 

would be for many operational applications) then an appropriate alternative classifier training metric could be adopted, 

as described in Section 3. 

 

Fig. 9. Example confidence map—

hazard locations indicated by black 

circles. 
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4.1 Missed detections in 1m halo results 

The results in Fig. 10 show that there were a significant number of hazards that were not detected with a 1m halo.  We 

examined the full-band images of these targets to see why these hazards were not detected.  Figure 11 shows 2m x 2m 

sub-images of the hazards that were missed in Lane 3 (we show Lane 3 because there were only 7 missed targets, which 

is a more manageable number of images for presentation in this paper). 

The images in Fig. 11 show that there are two possible explanations for a missed target with the 1m halo: 1) The target 

indexed 10 seems to have no significant signature in the image.  The ―hot spots‖ surrounding this target are all very low 

confidence.  The highest confidence ―hot spot‖ is the light blue blob to the left of the target; however, the local 

maximum of this spot is outside the 1m halo.  This leads to the second explanation: 2) The local maximum of the ―hot 

spot‖ of the target is outside the 1m halo.  The targets indexed 4, 15, 23, and 38 all have very significant local maxima 

located outside the 1m halo (but within the 2m x 2m sub-image).  It is possible that these ―hot spots‖ can be attributed to 

the target itself; however, this is impossible to determine with the current test data.  These ―hot spots‖ could very well be 

attributed to nearby clutter.  Without comprehensive experimental testing of each target type and operational parameters, 

such as bury depth and soil content, the phenomenology for these hazards cannot be determined.  In short, the expected 

distance between the true location of a buried hazard and its perceived radar signature is impossible to estimate.  Hence, 

the proper halo size, whether 1m, 2m, or something else, is very difficult to establish. 

 

(a) Test performance on Lane 1 

 

(b) Test performance on Lane 2 

 

(c) Test performance on Lane 3 

 

(d) Test performance on Lane 4 

Fig. 10. ROC curves for alarm locations produced by our narrow-band confidence map fusion algorithm.  All results are testing 

performance. 
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5. CONCLUSION  

We presented a method for detecting explosive hazards in FLGPR.  Our method fuses the detection results of multiple 

narrow-band images and a full-band image.  The candidate alarms in each image are first determined by a local-maxima 

detecting prescreener.  512 different Gabor filters are then convolved with the radar images at the prescreener alarm 

locations, resulting in a 512-dimensional feature vector that describes each alarm.  A statistical feature selection method 

then determines the best feature using training data.  This best feature is fed into a classifier training algorithm which 

uses area-under-ROC as a metric for classification performance.  Finally, the classification results for each narrow-band 

and full-band image are fused by constructing a grid-based confidence map; final detection is performed by finding local 

maxima in this confidence map. 

Our results show that our method is effective at reducing the false alarms in test data.  We use three lanes for training 

and a separate fourth lane for testing, essentially doing a four-fold cross-validation.  Our algorithm showed a false alarm 

reduction rate of greater than 50% in two of the lanes with a probability of detection near 100%.  The area-under ROC of 

our algorithm was greater than that of the prescreener result in all four test lanes, with both a 2m and 1m halo. 

5.1 Future work 

There is still much improvement to be had with this FLGPR system.  We believe that the methods proposed in this paper 

can be further improved.  First, the detection capabilities of the individual bands is different, as evidence in Fig. 5; thus, 

performance-based weighting of each band could improve the overall detection capabilities by weighting the results of 

bands that consistently produce good results in training data and de-weighting the results of inferior bands.  The 

classifier we proposed only uses 1 feature of the possible 512 features.  Preliminary testing showed that using additional 

features did not improve results and, in most cases, degraded testing performance.  However, it is possible that feature 

combinations exist that complement each other –one feature might be good at discriminating one type of hazard, while 

another is good at discriminating another.  Hence, we are going to investigate genetic-algorithm feature selection 

methods, similar to what we have used for other FLGPR detection algorithms.  Finally, during the development of the 

proposed method we also examined the use of non-linear classifiers, such as kernel support-vector machines and 

AdaBoost ensembles.  However, we were unable to achieve good generalized performance on test data.  We aim to 

revisit these more powerful classifiers as we get more test data to train with.  With the limited amount of test data we had 

for this study and the small amount of targets present in each lane, it was difficult to accurately model the target or true 

positive class. 

 

(a) Target index 4 

 

(b) Target index 10 

 

(c) Target index 11 

 

(d) Target index 15 

 

(e) Target index 21 

 

(f) Target index 23 

 

(g) Target index 38 
 

Fig. 11. Sub-images of full-band radar images showing missed targets—white circles indicate 1m halo. 



 

 
 

 

We are also going to examine how our method can be fused with detectors that use visible spectrum and long-wave 

infrared cameras.  We believe that different modalities detect different phenomena and, thus, present orthogonal 

viewpoints of the scene.  Hence, FLGPR and camera-based sensors should complement each other well and produce 

very good overall detection capability. 
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